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Shhh! Silencing by microRNA-155
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Small RNAs mediate a diverse pot-pourri of post-transcriptional silencing mechanisms, ranging from
‘classical’ RNA interference (RNAi), to gene repression by microRNAs (miRNAs), to maintenance
of genomic stability by repeat-associated small RNAs. Here, we review recent findings on the
function of miR-155, particularly its roles in mammalian innate and adaptive immunity, viral
infection and oncogenesis.
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1. INTRODUCTION
Since the first proposition of RNA as an information-
bearing molecule (Woese 1967; Crick 1968; Orgel
1968), an astounding breadth of RNA function has
been revealed over the last several decades. Far from
serving as mere intermediaries between DNA and
protein, RNA molecules have proven to be dynamic
entities bearing beautifully complex secondary
structures capable of diverse molecular behaviours
that alter gene expression. Messenger RNAs (mRNAs)
throughout the living world undergo cis (and some-
times trans)-splicing reactions, at times with the option
of alternative exons; editing by cytidine and adenosine
deaminases (Smith 2008); and can even function as
direct metabolite-sensing mediators of gene expression
(Tucker & Breaker 2005). Non-coding RNAs hardly
rank as the inferior cast-offs of their information-rich
mRNA relatives. To cite but a few examples: ribosomal
RNA (rRNA) and transfer RNA are universal com-
ponents of the translation machinery; catalytic RNAs
intimatelyparticipate inbiochemical reactions (Strobel &
Cochrane 2007); small nucleolar RNAs guide chemical
modifications to rRNA (Kiss 2001); and small guide
RNAs target mRNA editing events in kinetoplastid
mitochondria (Simpson et al. 2000).

One can hardly discuss non-coding RNAs without
mentioning those of the miniature persuasion, which
have been implicated in post-transcriptional gene
regulation. Early observations of an unexplained
silencing phenomenon in floral pigmentation were
termed ‘co-suppression’ (later known as RNA
interference or RNAi). This was the unexpected
outcome of the experiments performed by Jorgenson
and colleagues, where transgenic overexpression of a
pigment biosynthesis gene, chalcone synthase, in petunia
plants often resulted in the production of flowers
with variegated pigmentation or even complete lack of
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colour, instead of more vividly coloured flowers

(Napoli et al. 1990). What could have been dismissed

as trivia for horticulture aficionados instead proved to

be the first phenotypic evidence of a gene silencing

mechanism that was also observed by others in fungi

(Romano & Macino 1992) and nematodes (Guo &

Kemphues 1995).

The mystery of this phenomenon was later unra-

velled in the landmark studies of Fire and Mello who

uncovered a double-stranded RNA (dsRNA)-triggered

gene silencing mechanism in Caenorhabditis elegans
(Fire et al. 1998). The molecular mechanism of RNAi

was further elucidated by Hamilton and Baulcombe

who identified small, approximately 25 nt long RNAs

complementary to silenced genes in plants undergoing

transgene-dependent co-suppression (Hamilton &

Baulcombe 1999). Biochemists and geneticists pro-

ceeded to describe the means of biogenesis and

function for these small interfering RNAs (siRNAs).

Through pathways conserved in fungi, plants and

animals, dsRNAs are progressively chopped into small

RNA duplexes by the RNAseIII-type enzyme Dicer

(Hammond et al. 2000; Zamore et al. 2000; Bernstein

et al. 2001; Hutvagner et al. 2001). Single-stranded

21–23 nt siRNAs derived from these duplexes then

integrate into and guide the ribonuclease activity of the

RNA-induced silencing complex (RISC) to an mRNA

target in a sequence-specific manner (Hammond et al.
2001), leading to cleavage and silencing. This nucleo-

lytic activity lies in the Argonaute (Ago) protein

component of RISC (Hammond et al. 2001; Liu et al.
2004). Armed with an understanding of the

mechanisms driving RNAi, molecular biologists have

been able to adapt what began as a puzzling

observation in plants into a powerful technique in the

modern laboratory toolkit.

Parallel to the discovery of siRNA-mediated

silencing, a related class of endogenously encoded

small RNAs was described in C. elegans (Lee et al.
1993; Wightman et al. 1993). These microRNAs

(miRNAs) are largely indistinguishable from siRNAs
This journal is q 2008 The Royal Society
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in terms of their biochemical make-up, and also engage
many of the same molecular agents as siRNAs. They
arise from the multi-step processing of a long primary
miRNA (pri-miRNA) transcript that is 5 0-capped and
polyadenylated (Lee et al. 2002; Cai et al. 2004),
and contains one or more hairpin structures each
encompassing a mature miRNA sequence (Bartel
2004). Distinct ribonuclease-containing protein
complexes in the nucleus and cytoplasm whittle the
hairpin structures into small RNA duplexes (Lee et al.
2003), and as with siRNAs, one strand of each duplex
is selected for incorporation into an effector protein
complex (Hutvagner & Zamore 2002), which we will
refer to here as RISC (which also goes by other similar
names, depending on one’s preferred terminology).
Plant miRNAs function prevalently as siRNAs, binding
with full complementarity to their cognate mRNAs and
targeting them for endonucleolytic cleavage (Llave
et al. 2002; Rhoades et al. 2002). Animal miRNAs, by
contrast, are believed to latch onto mRNA target
sequences with partial complementarity, and mediate
silencing primarily through translational repression
(Bartel 2004), although examples of mRNA destabili-
zation have also been observed (Mansfield et al. 2004;
Yekta et al. 2004). Although the current miRNA
registry is by no means comprehensive, miRNAs have
been identified in most eukaryotic model organisms,
with the striking exception of Saccharomyces cerevisiae
(Griffiths-Jones et al. 2008). In humans, the known
miRNAs number in the several hundreds, some with
evolutionary conservation reaching back to nematodes
and arthropods (Griffiths-Jones et al. 2008). The
miRNA gene pool is much like any other generic gene
family: some miRNAs are phylogenetically ubiquitous,
while others are restricted to single species; some are
present in multiple cell types, while others
are constrained in time and space; and some exist in
single forms, while others comprise families of related
‘isoforms’ that differ by only a few nucleotides. An
estimated 30 per cent of eukaryotic genes are subject to
miRNA regulation (Lewis et al. 2003; Yu et al. 2007),
implicating this mechanism as a substantial means by
which organisms modulate their gene expression
profiles. Unsurprisingly, this seeming prevalence of
miRNA-mediated regulation throughout evolution and
the living world has inspired many (including the
authors of this review) to embark upon scientific quests
to identify specific targets of miRNA regulation.

Kin of siRNAs and miRNAs have also been
implicated in the silencing of repetitive elements in
the genome. The centromeric repeats of fission yeast
give rise to 22 nt heterochromatic small RNAs
(Reinhart & Bartel 2002) that recruit an Ago-
containing silencing complex distinct from RISC,
called RITS (RNA-induced initiation of transcrip-
tional gene silencing), to maintain the silenced
heterochromatic character of the centromere (Volpe
et al. 2002, 2003; Verdel et al. 2004). The most recent
additions to the small RNA clan are the Piwi-
interacting small RNAs (piRNAs), 25–31 nt long
species enriched in metazoan germ cells (Hartig et al.
2007; O’Donnell & Boeke 2007). Unlike their more
diminutive small RNA cousins, piRNAs arise in a Dicer-
independent fashion, probably from a single-stranded
Phil. Trans. R. Soc. B (2009)
RNA precursor (Vagin et al. 2006; Houwing et al. 2007).
They partner with the Piwi subfamily of Argonaute
proteins to silence transposons in the germ line, and may
play additional unknown roles in mice, whose piRNA
repertoire includes only a handful matching to repetitive
transposon sequences.

The burgeoning literature on small RNA function
reflects on the diversity of essential tasks they perform
in nearly all clades of life. Most of these small RNAs
function in what one could broadly classify as self-
protection—against exogenous sources of dsRNA or
against endogenous selfish genetic elements. Plants
generate siRNAs from invading viral genomes as one
component of their antiviral immune defences (Ding &
Voinnet 2007), although the necessity of mechanism
appears to have dwindled in evolution with the advent
of more complex immune systems, as similar virus-
derived immune siRNAs have not been described
in higher eukaryotes. siRNAs and piRNAs also shield
the genome from damage by transposable elements,
maintaining them in silenced and non-mobile states
(Slotkin & Martienssen 2007). The heterochromatic
small RNAs of fission yeast also play a role in the
maintenance of genomic integrity, as they preserve the
silencing of important chromosome structure ele-
ments (Volpe et al. 2002, 2003; Verdel et al. 2004).

With regard to function, animal miRNAs stand
slightly apart—not necessarily final arbiters of silen-
cing, but rather fine-tuners of gene expression with the
capacity for coordinate regulation of groups of genes.
In this review, we will discuss one microRNA, miR-
155, as a representative example of the influence that
a single non-coding small RNA can wield on multiple
physiological processes.
2. miR-155
A perusal of miRBASE, the online miRNA registry,
shows that miR-155 is quite well conserved in the animal
lineage, having been identified in sea squirts, fishes, frogs
and mammals (Griffiths-Jones et al. 2008). With the
development of techniques to assay for global patterns of
miRNA expression (by small RNA cloning and sequen-
cing, or by array methods), it is possible to survey tissue-
specific patterns of miRNA expression. One such
dataset for human and mouse tissues shows that miR-
155 is prominently expressed in many haemopoietic cell
types (Landgraf et al. 2007). This is a fortuitous
convergence, as modern immunologists have at their
disposal detailed knowledge of immune cell lineages, cell
surface markers that differentiate cell subsets and
numerous assays both in vitro and in vivo for immune
function—in other words, laboratory immunology is
an excellent milieu in which to study the impact of
a specific miRNA on cell development, maturation or
effector function. Indeed, over the last few years, several
complementary stories have implicated miR-155 as
a key regulator of diverse immune processes.
3. miR-155 AS ONCOMIR
The story of miR-155 (although it was not thus
named at the time) originates with studies in chickens
inflicted with avian leukosis virus-induced lymphomas,
which were known to harbour retroviral insertions at
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proto-oncogenes such as myc and myb (Clurman &
Hayward 1989). An additional preferred site of proviral
insertion was identified in these lymphomas, named
bic, for B-cell integration cluster (Clurman & Hayward
1989). Retroviral activation of bic was correlated with
myc activation and tumour metastasis, suggesting
collaboration between oncogenes to promote cancer
progression. Homologues of bic were later identified in
mouse and human (Tam 2001), but the functional
significance of bic remained unknown for some time, as
the gene lacked conserved open reading frames. The
most conspicuously conserved feature in the Bic RNA
was a predicted double-stranded fold-back motif,
which would later be recognized as the precursor
hairpin encoding miR-155 (Tam 2001; Eis et al. 2005).

Similar associations between Bic/miR-155
expression and human B-cell cancers began to emerge:
Bic/miR-155 is highly overexpressed in lymphomas of
activated-B-cell origin, including Hodgkin’s lymphoma
(van den Berg et al. 2003; Kluiver et al. 2005) and
diffuse large cell B-cell lymphoma (Eis et al. 2005;
Kluiver et al. 2005). Upregulation of miR-155 does not
appear to be a universal feature of B lymphomas,
however, as Burkitt’s lymphomas express very little Bic
(Kluiver et al. 2006), and furthermore demonstrate an
ill-described defect in the processing of mature miR-
155 from the Bic precursor (Kluiver et al. 2007). These
correlational observations were complemented by the
work of Croce and colleagues who created transgenic
mice overexpressing miR-155 in B cells (Costinean
et al. 2006). These mice developed pre-B-cell lympho-
proliferative disorders, which later progressed to full
B-cell lymphomas. The authors then assayed for
changes in the transcriptome of these transgenic
animals by microarray analysis, and found that 200
proliferation genes were upregulated—an unsurprising
result, given that the general model of miRNA function
holds that most miRNAs are capable of regulating
multiple targets (Krek et al. 2005).

Not an exclusive bane of lymphoid cells, miR-155
was also detected at elevated levels in the bone marrow
of some patients suffering acute myeloid leukaemia
(O’Connell et al. 2008). Overexpression of miR-155 in
haemopoietic stem cells in the mouse resulted in gross
expansion of myeloid lineages in the bone marrow
and peripheral blood at the expense of erythroid and
lymphoid populations. These mice exhibited down-
regulation of approximately 1000 transcripts; of those
containing putative miR-155 target sites, several genes
involved in myeloid proliferation or genesis were high-
lighted as candidate miR-155 targets responsible for
the myeloproliferative disorder.

The patently obvious clinical relevance of miRNAs
to cancer has been demonstrated not only for miR-
155, but for numerous others as well, thus designating
a class of oncogenic miRNAs dubbed ‘oncomiRs’.
Given that miR-155 overexpression has additionally
been observed in solid tumours of diverse origin
(breast, lung and colon), assays for miR-155 expres-
sion could potentially serve as clinical diagnostic tools
(Volinia et al. 2006). Furthermore, knowledge of
specific miRNA expression can serve as a springboard
for identification of tandemly regulated sets of genes
whose downregulation may contribute to oncogenesis.
Phil. Trans. R. Soc. B (2009)
4. miR-155 IN INNATE AND ADAPTIVE IMMUNITY
The hazards of deranged miR-155 expression are
clearly demonstrated by the diversion of lymphoid
and myeloid cells to an oncogenic fate, but what is the
normal role of miR-155 in the immune system? The
earliest Bic enthusiasts observed low expression of Bic
in haemopoietic and lymphoid organs of healthy
chickens (Tam et al. 1997), suggesting some kind of
inherent function outside of oncogenesis. As the
miRNA field came to prominence, several groups
noted that mature miR-155 was induced upon
activation of myeloid and lymphoid cell types in the
mouse (O’Connell et al. 2007; Rodriguez et al. 2007;
Thai et al. 2007; Teng et al. 2008).

Baltimore and colleagues noted miR-155 upregula-
tion as a consistent feature of the mammalian
inflammatory response (O’Connell et al. 2007).
Inflammation is a hallmark of innate immunity, which
performs the first wave of anti-pathogenic defence.
Specialized cells such as macrophages and dendritic
cells recognize conserved pathogenic molecular motifs
via Toll-like receptors (TLRs), triggering cytokine and
chemokine production, recruitment of additional
effector cells and the initiation of the later-acting
adaptive immune response. Various TLR ligands that
can simulate viral or bacterial infection in vitro induced
miR-155 expression in monocyte and macrophage cell
lines (O’Connell et al. 2007; Tili et al. 2007). This
induction was dependent on the signalling pathways
initiated by TLR activation, implicating miR-155 as a
downstream player in innate immune function
(O’Connell et al. 2007). However, the direct targets
downregulated by miR-155 during inflammation have
not been unequivocally confirmed.

Both B and T lymphocytes, key to the adaptive
immune response, also display similar induction of
Bic/miR-155 in response to activating stimuli (Haasch
et al. 2002; Thai et al. 2007; Teng et al. 2008). Here, we
will focus mainly on the findings in B lymphocytes.
During an in vivo infection, the immediate innate
immune response is later supplanted by the adaptive
immune response, which can provide a greater degree
of antigen specificity, as well as the generation of
immunological memory. One component of this
response is provided by the B lymphocytes, which
manufacture antigen-recognizing immunoglobulins
(Ig). These molecules arise on the B-lymphocyte cell
surface during early development, and undergo
additional functional maturation upon contact with
their cognate antigens. These secondary maturation
processes include: affinity maturation, which refers to
the generation of Ig variants with increased affinity for
their cognate antigens (achieved through somatic
hypermutation, or SHM, of the Ig gene); and class
switch recombination (CSR), which changes the Ig
isotype (and hence, effector function). Mice deficient
in miR-155 show clear defects in both of these
processes, exhibiting reduced overall titres of serum
Ig, and specifically, decreased titres of high-affinity and
class-switched hapten-specific Ig (Rodriguez et al.
2007; Thai et al. 2007; Vigorito et al. 2007). These
B-lymphocyte defects, along with faulty antigen
presentation by dendritic cells and disturbed
T lymphocyte maturation, fed into the gross phenotype
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of the immunocompromised miR-155-deficient
animal, which was unable to generate immunological
memory, and thus could not protect itself from
repeated infections with the same pathogen (Rodriguez
et al. 2007). Transcriptome profiling revealed that
approximately 60 putative miR-155 target genes
were upregulated in these mice compared with wild-
type counterparts (Vigorito et al. 2007). One of these
potential targets was Pu.1, a transcription factor known
to function in B-lymphocyte development (Scott et al.
1994; McKercher et al. 1996). Indeed, overexpression
of Pu.1 in wild-type B lymphocytes recapitulated the
CSR defect observed in miR-155-deficient cells,
suggesting the existence of Pu.1-mediated regulation
of Ig maturation (Vigorito et al. 2007).

Concomitantly, we and the Nussenzweig group
independently identified activation-induced cytidine
deaminase (AID) as a miR-155 target (Dorsett et al.
2008; Teng et al. 2008). AID provides the enzymatic
impetus for both SHM and CSR in B lymphocytes
(Muramatsu et al. 1999, 2000), and the AID mRNA
harbours a very well-conserved miR-155 target site in
its 3 0 UTR. Instead of evaluating the effects of global
miR-155 deficiency, we examined the effects of
specifically disrupting the interaction between miR-
155 and its target site in the AID mRNA in vivo. B
lymphocytes from mice bearing a mutated AID-miR-
155 target site showed increased expression of AID
mRNA and protein in activated B lymphocytes, as well
as promiscuous expression in B-lymphocyte popu-
lations where AID activity should no longer be present.
These expression defects were furthermore associated
with increased CSR frequency, defective affinity
maturation reminiscent of that reported by our
colleagues and increased frequency of AID-mediated
chromosomal translocations (Dorsett et al. 2008; Teng
et al. 2008). Thus, miR-155-mediated regulation of
AID serves a dual purpose—controlling abundance
and timing of AID expression during the natural
immune response, and prohibition of potentially
oncogenic chromosomal aberrations.

The immune deficiencies of the miR-155-deficient
mouse clearly reflect the unbalanced expression of a
suite of genes far more complex than simply Pu.1 and
AID. The challenge in the coming years will be to
validate the panel of predicted target genes, and
somehow integrate this knowledge to understand how
a single miRNA can exert such diverse influence over
multiple cell types to contribute to the coordination of a
concerted cellular immune response.
5. miR-155 AND VIRUSES
Since the first computational and biological identifi-
cation of virally encoded small RNAs (Pfeffer et al.
2004, 2005), a number of miRNA-mediated functions
have been proposed on both sides of the virus–host
equation (for review, see Gottwein & Cullen 2008). To
date, only the dsDNA subset of viruses has been found
to encode its own miRNAs, which largely regulate the
expression of viral gene products (Gottwein & Cullen
2008). Viruses have also been known to exploit
host miRNAs as survival mechanisms (Gottwein &
Cullen 2008), and fascinatingly can even encode viral
Phil. Trans. R. Soc. B (2009)
doppelgangers of host miRNAs. One such miR-155
mimic has been described in Kaposi’s-sarcoma-associ-
ated herpesvirus (KSHV; Gottwein et al. 2007; Skalsky
et al. 2007). The KSHV miR-K12-11 seed region
(the 5 0-most eight nucleotides of an miRNA respon-
sible for its targeting specificity) shares complete
homology to that of miR-155, and both miRNAs can
regulate a communal set of targets (Gottwein et al.
2007; Skalsky et al. 2007). Thus, in addition to all
the insidious viral mechanisms of subverting host
immunity, viral homologues of cellular miRNAs may
further manipulate host gene expression to create an
environment more palatable for viral survival and
propagation. Exactly what functional parallels exist
between viral infection and normal B-lymphocyte
activation, both of which depend on the suppression
of miR-155-responsive targets, remains to be seen.
Gottwein and Cullen have also speculated on a role
for viral miR-155 homologues in lymphomagenesis,
noting that the MDV-1 herpesvirus, oncogenic in
chickens, also expresses an miR-155-like miRNA,
while its non-oncogenic cousin MDV-2 does not
(Gottwein & Cullen 2008). This hypothesis is consist-
ent with our knowledge of viral-transformation-
induced Bic expression inavian lymphomas. Incidentally,
the same is true in humans—Epstein–Barr virus (EBV),
an oncogenic virus that latently infects human B
lymphocytes, also induces host miR-155 expression
(Yin et al. 2008a).

In this miR-155-mediated interplay between virus
and host, we glimpse a fascinating cellular mutiny—
part of the natural B-lymphocyte maturation pro-
gramme is unfortunately diverted onto an alternative
path leading to persistent viral infection, transfor-
mation and cancer.
6. miR-155 AS MULTITASKER
Although, miR-155 has been largely characterized as
an immune-specific miRNA, its expression profile
indicates that this is not necessarily the case. Outside
of haemopoietic lineages, miR-155 is also expressed in
mammalian reproductive tissues, fibroblasts and epi-
thelial tissues, and the central nervous system (Landgraf
et al. 2007). In fact, one of the earliest described
miR-155 targets was the endothelial angiotensin II type
1 receptor (AT1R), whose ligand, angiotensin II,
contributes to the development of cardiovascular
disease (Martin et al. 2006, 2007). A single nucleotide
polymorphism (SNP) in the 3 0 UTR of the human
AT1R gene had long been associated with cardiovas-
cular pathologies (Martin et al. 2007). It was shown
that this SNP disrupted an miR-155 target seed
region, impeding miR-155-mediated downmodulation
of AT1R expression, thus allowing for increased
pathological bioactivity of angiotensin II (Martin
et al. 2007; Sethupathy et al. 2007). Contrasting to
the previously described deleterious consequences of
miR-155 expression, in this case miR-155 plays a
protective role as a molecular safeguard against
cardiovascular disease.

However, in keeping with the known immuno-
oncogenic character of this miRNA, pancreatic
cancer researchers have also noted the overexpression
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of miR-155 in pancreatic ductal adenocarcinoma cells.
The pro-apoptotic TP53INP1 (tumour protein
53-induced nuclear protein 1) was found to be
suppressed by miR-155 in these pancreatic tumours.
As loss of TP53INP1 has been observed in a number of
other epithelial cancers, it is possible that miR-155 may
contribute to a standard mechanism of oncogenesis in
these types of tissues (Gironella et al. 2007).

Although miR-155 is by no means a ubiquitously
expressed miRNA, it is neither snobbishly restricted
to immune cells. What non-oncogenic purposes, if
any, may it serve in these other tissues? Only time
(and newly developing miRNA target validation
strategies) will tell.
7. PERSPECTIVE AND FUTURE DIRECTIONS
RNAs perform some of the most astonishing acrobatics
in biology, and the explosive discovery of small-RNA-
mediated activities in the last few years has only spurred
the rapt captivation of RNA devotees (the authors
included). We discuss here the diverse contributions of
one small RNA, miR-155, to many physiological
processes, sometimes teetering on the edge of normal
function and disease. Our understanding of miR-155
function is by no means complete, and we imagine that
many of the remaining questions will be addressed by
our colleagues in the coming years.

What controls the expression of miR-155 itself?
Conflicting reports have implicated AP-1 (O’Connell
et al. 2007; Yin et al. 2008b) and NF-kB (Yin et al.
2008a) sites as control elements for Bic transcription,
but the definitive set of transcriptional regulatory
factors for the gene is not known. Two alternatively
polyadenylated forms of Bic have also been detected
(Tam 2001): are these isoforms equally competent at
producing mature miR-155? Is one Bic isoform
preferentially expressed in certain B lymphomas, and
not others?

One cannot consider miRNA-mediated gene
expression without querying the set of targets that it
regulates. miR-155, being a relatively well-characterized
representative of the miRNA family, could be an excel-
lent candidate around which one could design an
integrative scheme to look at global miRNA target
regulation. That is, can we better understand miR-155
function by somehow cross-referencing miRNA
target prediction algorithms, miRNA expression data,
tissue-specific transcriptome data and proteomic pro-
files (using SILAC-based methods, for example)—an
endeavour no doubt currently underway by industrious
bioinformaticians. Subsequent target-by-target vali-
dation of resulting computational findings would be
relatively easy to address in established cell- and
animal-based models that have been described above.

From an evolutionary standpoint, has miR-155 as a
gene regulator influenced the evolution of its targets?
Are there genes that have non-functional or cryptic
miR-155 target sites, or are there examples throughout
phylogeny where genes have acquired miR-155 target
sites, thus altering their fine-tuned expression profiles?
Furthermore, how has the host–virus interaction
influenced the evolution of miR-155-like miRNAs in
viruses, particularly keeping in mind that viral
Phil. Trans. R. Soc. B (2009)
miRNAs are usually very poorly conserved in sequence
(Gottwein & Cullen 2008)?

Given the association of miR-155 expression with
diverse cancers, the therapeutic potential of miR-155 is
clear. Is there an anti-cancer miR-155 inhibitor
therapeutic in our future? Conversely, can we use our
knowledge of miR-155 targets to treat cancer?

It is astounding that the tiny miR-155 molecule—a
mere handful of ribonucleotides—can shape and
reshape the physiological environment in a diverse
range of tissues. This miRNA is but one of hundreds
that, far from being evolutionary relics of the archaic
RNA world, continue to play indispensable roles in the
complex network we call gene regulation.
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